Example 3 Solve $\sqrt{11x^2 - 63} - 2x = 0$.

Solution
$$\sqrt{11x^2 - 63} - 2x = 0$$

$$\sqrt{11x^2 - 63} = 2x$$
 {Set apart the radical on one side of the equation.

$$11x^2 - 63 = 4x^2$$
 {Square both sides. $7x^2 = 63$

$$x^2 = 9$$

$$x = 3$$
 or $x = -3$

Check:
$$\sqrt{11(3)^2 - 63} - 2(3) \stackrel{?}{=} 0$$

$$\sqrt{99-63}-6\stackrel{?}{=}0$$

$$\sqrt{36} - 6 \stackrel{?}{=} 0$$

$$6 - 6 = 0$$
 $\sqrt{ }$

$$\sqrt{11(-3)^2-63}-2(-3) \stackrel{?}{=} 0$$

$$\sqrt{99-63}+6\stackrel{?}{=}0$$

$$\sqrt{36} + 6 \stackrel{?}{=} 0$$

$$6 + 6 \neq 0$$

-3 is not a solution.

:. the solution set is {3}. Answer

Oral Exercises

Solve.

1.
$$\sqrt{x} = 7$$

4.
$$\sqrt{y} = 5$$

7.
$$\sqrt{m} = -1$$

2.
$$\sqrt{v} = 8$$

5.
$$\sqrt{4a} = 10$$

8.
$$\sqrt{k} = 0$$

3.
$$\sqrt{d} = 10$$

6.
$$\sqrt{4m} = 8$$

9.
$$\sqrt{z^2} = 6$$

State the first step in the solution of each equation.

10.
$$\sqrt{3x} = 9$$

13. $\sqrt{x-5}+1=8$

11.
$$\sqrt{5a+9}=12$$

14.
$$2\sqrt{5b} = 6$$

12.
$$\sqrt{5z-1}=7$$

15.
$$\sqrt{9x} - 5 = 13$$

Written Exercises

Solve.

A 1.
$$\sqrt{x} = 3$$

4.
$$9 = \sqrt{3a}$$

7.
$$1 = \sqrt{m} - 3$$

10.
$$\sqrt{y} - \frac{1}{2} = 2$$

13.
$$\sqrt{x+1} = 3$$

16.
$$5 = 2\sqrt{3x}$$

2.
$$\sqrt{y} = 14$$

5.
$$\sqrt{8x} = \frac{2}{5}$$

8.
$$7 = \sqrt{z} - 2$$

11.
$$3 = \sqrt{\frac{x}{2}}$$

14.
$$\sqrt{m+5} = 1$$

17.
$$\sqrt{4x} + 2 = 6$$

3.
$$4 = \sqrt{2x}$$

6.
$$\sqrt{4n} = \frac{1}{3}$$

9.
$$\frac{2}{3} + \sqrt{b} = 1$$

12.
$$8 = \sqrt{\frac{s}{5}}$$

15.
$$20 = 5\sqrt{2x}$$

18.
$$\sqrt{3x} + 4 = 7$$

19.
$$4 = \sqrt{8a} + 3$$

22.
$$\sqrt{5m-5}+6=7$$

20.
$$3 = \sqrt{4x + 1}$$

21.
$$\sqrt{5y-2}+3=9$$

22.
$$\sqrt{5m-5}+6=7$$

23.
$$\sqrt{x} = 3\sqrt{7}$$

24.
$$\sqrt{r} = 5\sqrt{2}$$

B 25.
$$8 = \sqrt{\frac{5a}{4}} - 2$$

28.
$$\sqrt{\frac{2n-4}{8}}=2$$

31.
$$15\sqrt{2} = 5\sqrt{t}$$

34.
$$\sqrt{2m^2-10}=4$$

37.
$$\sqrt{5b^2-36}=2b$$

40.
$$\sqrt{x^2+9}=3-x$$

26.
$$14 = \sqrt{\frac{7x}{3}} + 2$$

29.
$$4 = \sqrt{\frac{7k-10}{9}}$$

32.
$$5\sqrt{10} = 6\sqrt{m}$$

35.
$$10 = 2\sqrt{3c^2 - 2}$$

38.
$$\sqrt{19x^2 - 51} = 4x$$

41.
$$\sqrt{3a^2-32}=a$$

27.
$$\sqrt{\frac{2x+9}{5}} = 3$$

30.
$$3 = \sqrt{\frac{4x-5}{7}}$$

33.
$$\sqrt{2a^2-5}=11$$

36.
$$36 = 4\sqrt{4m^2 + 5}$$

39.
$$\sqrt{x^2+1}=1-x$$

42.
$$\sqrt{13b^2+33}=4b$$

C 43.
$$\sqrt{x^2 + 6x} = 4$$

45.
$$\sqrt{15x^2 - 12x} = 9x$$

47.
$$\sqrt{x} + 6 = \sqrt{16x}$$

44.
$$\sqrt{a^2 + 3a} = 2$$

46.
$$\sqrt{20y^2 - 13y} = 5y$$

48.
$$3\sqrt{a} + 7 = \sqrt{16a}$$

Solve each system of equations.

49.
$$3\sqrt{a} + 5\sqrt{b} = 31$$

 $5\sqrt{a} - 5\sqrt{b} = -15$

50.
$$5\sqrt{x} - 2\sqrt{y} = 4\sqrt{2}$$

 $2\sqrt{x} + 3\sqrt{y} = 13\sqrt{2}$

Problems

Solve.

- 1. The square root of three times a number is 15. Find the number.
 - 2. Twice the square root of a number is 22. Find the number.
 - 3. One eighth of the square root of a number is 3. Find the number.
 - **4.** The square root of one eighth of a number is 3. Find the number.
 - 5. When 4 times a number is increased by 5, the square root of the result is 11. Find the number.
 - 6. When 23 is subtracted from the square root of three times a number, the result is 16. Find the number.
- 7. The radius (r) of a cylinder is related to its volume (V) and its height (h)by the formula $r = \sqrt{\frac{V}{\pi h}}$. Find the volume of a cylinder whose radius is 15 cm and whose height is 36 cm. Express your answer in terms of π .
 - 8. The time it takes a free-falling object to fall can be found by using the formula $t = \sqrt{\frac{2s}{g}}$, where t is in seconds, $g = 9.8 \text{ m/s}^2$, and s is the distance in meters. Find the distance an object falls in 15 s.

- 9. The current I that flows through an electrical appliance is determined by $I = \sqrt{\frac{P}{R}}$, where P is the power required and R is the resistance of the appliance. The current is measured in amperes (A), the power in watts (W), and the resistance in ohms (Ω) . An electric hair dryer has a resistance of 60 Ω and draws 4.5 A of current. How much power does it use?
- **C** 10. The geometric mean of two positive numbers is the positive square root of their product. Find two consecutive positive even integers whose geometric mean is $4\sqrt{39}$.
 - 11. The period of a pendulum (T) is the amount of time (in seconds) it takes the pendulum to make a complete swing back and forth. The period is determined by the formula $T = 2\pi \sqrt{\frac{l}{9.8}}$ where l is the length of the pendulum in meters. Find the length of a pendulum with a period of 8 seconds. Give your answer to the nearest tenth. (Use 3.14 for π .)

Mixed Review Exercises

Express in simplest form.

1.
$$(5 + \sqrt{6})(5 - \sqrt{6})$$

2.
$$(2 + \sqrt{5})^2$$

5.
$$3\sqrt{5}(\sqrt{15}-2\sqrt{5})$$

3.
$$\frac{2}{3+\sqrt{11}}$$

6.
$$(2\sqrt{3}+1)(\sqrt{3}-4)$$

Factor completely.

4. $\frac{2+\sqrt{5}}{1-\sqrt{5}}$

7.
$$7a^2 - 14a + 7$$

10. $y^3 + y^2 - 6y - 6$

8.
$$t^3 - 4t^2 - 45t$$

11.
$$4g^5 - 100g$$

9.
$$6x(x+2) + 4(x+2)$$

12.
$$36x^2 + 24xy + 4y^2$$

Self-Test 3

Vocabulary simplest form of a radical (p. 537) conjugate (p. 544) rationalizing the denominator (p. 537) radical equation (p. 547)

Simplify.

1.
$$2\sqrt{3} \cdot 5\sqrt{3}$$

3.
$$6\sqrt{7} + \sqrt{13} - 4\sqrt{13} + \sqrt{7}$$

5.
$$(3-\sqrt{6})^2$$

2.
$$\sqrt{\frac{5}{4}} \cdot \sqrt{\frac{12}{15}}$$

4.
$$5\sqrt{48} - 8\sqrt{27}$$

4.
$$5\sqrt{48} - 8\sqrt{27}$$

6. $(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$

Obj. 11-7, p. 537