Example 3 Solve $\sqrt{11 x^{2}-63}-2 x=0$.
Solution $\sqrt{11 x^{2}-63}-2 x=0$

$$
\begin{aligned}
& \sqrt{11 x^{2}-63}=2 x\left\{\begin{array}{l}
\text { Set apart the radical on } \\
\text { one side of the equation. }
\end{array}\right. \\
& 11 x^{2}-63=4 x^{2} \quad \text { \{Square both sides. } \\
& 7 x^{2}=63 \\
& x^{2}=9 \\
& x=3 \text { or } x=-3 \\
& \text { Check: } \sqrt{11(3)^{2}-63}-2(3) \stackrel{?}{\underline{2}} 0 \\
& \begin{array}{r}
\sqrt{99-63}-6 \stackrel{?}{=} 0 \\
\sqrt{36}-6 \stackrel{?}{=} 0 \\
6-6=0
\end{array} \\
& \sqrt{11(-3)^{2}-63}-2(-3) \stackrel{?}{=} 0 \\
& \sqrt{99-63}+6 \stackrel{?}{\underline{2}} 0 \\
& \sqrt{36}+6 \stackrel{?}{\underline{=}} 0 \\
& 6+6 \neq 0
\end{aligned}
$$

-3 is not a solution.
\therefore the solution set is $\{3\}$. Answer

Oral Exercises

Solve.

1. $\sqrt{x}=7$
2. $\sqrt{y}=8$
3. $\sqrt{d}=10$
4. $\sqrt{y}=5$
5. $\sqrt{4 a}=10$
6. $\sqrt{4 m}=8$
7. $\sqrt{m}=-1$
8. $\sqrt{k}=0$
9. $\sqrt{z^{2}}=6$

State the first step in the solution of each equation.
10. $\sqrt{3 x}=9$
11. $\sqrt{5 a+9}=12$
12. $\sqrt{5 z-1}=7$
13. $\sqrt{x-5}+1=8$
14. $2 \sqrt{5 b}=6$
15. $\sqrt{9 x}-5=13$

Written Exercises

Solve.
A

1. $\sqrt{x}=3$
2. $\sqrt{y}=14$
3. $4=\sqrt{2 x}$
4. $9=\sqrt{3 a}$
5. $\sqrt{8 x}=\frac{2}{5}$
6. $\sqrt{4 n}=\frac{1}{3}$
7. $1=\sqrt{m}-3$
8. $7=\sqrt{z}-2$
9. $\frac{2}{3}+\sqrt{b}=1$
10. $\sqrt{y}-\frac{1}{2}=2$
11. $3=\sqrt{\frac{x}{2}}$
12. $8=\sqrt{\frac{s}{5}}$
13. $\sqrt{x+1}=3$
14. $\sqrt{m+5}=1$
15. $20=5 \sqrt{2 x}$
16. $5=2 \sqrt{3 x}$
17. $\sqrt{4 x}+2=6$
18. $\sqrt{3 x}+4=7$
19. $4=\sqrt{8 a}+3$
20. $3=\sqrt{4 x+1}$
21. $\sqrt{5 y-2}+3=9$
22. $\sqrt{5 m-5}+6=7$
23. $\sqrt{x}=3 \sqrt{7}$
24. $\sqrt{r}=5 \sqrt{2}$

B 25. $8=\sqrt{\frac{5 a}{4}}-2$
26. $14=\sqrt{\frac{7 x}{3}}+2$.
27. $\sqrt{\frac{2 x+9}{5}}=3$
28. $\sqrt{\frac{2 n-4}{8}}=2$
29. $4=\sqrt{\frac{7 k-10}{9}}$
30. $3=\sqrt{\frac{4 x-5}{7}}$
31. $15 \sqrt{2}=5 \sqrt{t}$
32. $5 \sqrt{10}=6 \sqrt{m}$
33. $\sqrt{2 a^{2}-5}=11$
34. $\sqrt{2 m^{2}-10}=4$
35. $10=2 \sqrt{3 c^{2}-2}$
36. $36=4 \sqrt{4 m^{2}+5}$
37. $\sqrt{5 b^{2}-36}=2 b$
38. $\sqrt{19 x^{2}-51}=4 x$
39. $\sqrt{x^{2}+1}=1-x$
40. $\sqrt{x^{2}+9}=3-x$
41. $\sqrt{3 a^{2}-32}=a$
42. $\sqrt{13 b^{2}+33}=4 b$

C 43. $\sqrt{x^{2}+6 x}=4$
45. $\sqrt{15 x^{2}-12 x}=9 x$
47. $\sqrt{x}+6=\sqrt{16 x}$

Solve each system of equations.

49. $3 \sqrt{a}+5 \sqrt{b}=31$
50. $5 \sqrt{x}-2 \sqrt{y}=4 \sqrt{2}$
$5 \sqrt{a}-5 \sqrt{b}=-15$
$2 \sqrt{x}+3 \sqrt{y}=13 \sqrt{2}$
51. $\sqrt{a^{2}+3 a}=2$
52. $\sqrt{20 y^{2}-13 y}=5 y$
53. $3 \sqrt{a}+7=\sqrt{16 a}$

Problems

Solve.

A 1. The square root of three times a number is 15 . Find the number.
2. Twice the square root of a number is 22 . Find the number.
3. One eighth of the square root of a number is 3 . Find the number.
4. The square root of one eighth of a number is 3 . Find the number.
5. When 4 times a number is increased by 5 , the square root of the result is 11. Find the number.
6. When 23 is subtracted from the square root of three times a number, the result is 16 . Find the number.

B 7. The radius (r) of a cylinder is related to its volume (V) and its height (h) by the formula $r=\sqrt{\frac{V}{\pi h}}$. Find the volume of a cylinder whose radius is 15 cm and whose height is 36 cm . Express your answer in terms of π.
8. The time it takes a free-falling object to fall can be found by using the formula $t=\sqrt{\frac{2 s}{g}}$, where t is in seconds, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, and s is the distance in meters. Find the distance an object falls in 15 s .
9. The current I that flows through an electrical appliance is determined by $I=\sqrt{\frac{P}{R}}$, where P is the power required and R is the resistance of the appliance. The current is measured in amperes (A), the power in watts (W), and the resistance in ohms (Ω). An electric hair dryer has a resistance of 60Ω and draws 4.5 A of current. How much power does it use?

C 10. The geometric mean of two positive numbers is the positive square root of their product. Find two consecutive positive even integers whose geometric mean is $4 \sqrt{39}$.
11. The period of a pendulum (T) is the amount of time (in seconds) it takes the pendulum to make a complete swing back and forth. The period is determined by the formula $T=2 \pi \sqrt{\frac{l}{9.8}}$ where l is the length of the pendulum in meters. Find the length of a pendulum with a period of 8 seconds. Give your answer to the nearest tenth. (Use 3.14 for π.)

Mixed Review Exercises

Express in simplest form.

1. $(5+\sqrt{6})(5-\sqrt{6})$
2. $(2+\sqrt{5})^{2}$
3. $\frac{2}{3+\sqrt{11}}$
4. $\frac{2+\sqrt{5}}{1-\sqrt{5}}$
5. $3 \sqrt{5}(\sqrt{15}-2 \sqrt{5})$
6. $(2 \sqrt{3}+1)(\sqrt{3}-4)$

Factor completely.

7. $7 a^{2}-14 a+7$
8. $t^{3}-4 t^{2}-45 t$
9. $6 x(x+2)+4(x+2)$
10. $y^{3}+y^{2}-6 y-6$
11. $4 g^{5}-100 g$
12. $36 x^{2}+24 x y+4 y^{2}$

Self-Test 3

Vocabulary simplest form of a radical (p. 537) rationalizing the denominator (p. 537)
conjugate (p. 544)
radical equation (p. 547)

Simplify.

1. $2 \sqrt{3} \cdot 5 \sqrt{3}$
2. $\sqrt{\frac{5}{4}} \cdot \sqrt{\frac{12}{15}}$
Obj. 11-7, p. 537
3. $6 \sqrt{7}+\sqrt{13}-4 \sqrt{13}+\sqrt{7}$
4. $5 \sqrt{48}-8 \sqrt{27}$
Obj. 11-8, p. 540
5. $(3-\sqrt{6})^{2}$
6. $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
Obj. 11-9, p. 544
